
Studypool values your privacy. Only questions posted as Public are visible on our website.
Chemistry work sheet

Anonymous
label
Chemistry
timer
Asked: Nov 9th, 2016
Question description
please see the file attached
Adapted from PLTL
“The energies of our system will decay, the glory of the sun will be
dimmed, and the earth, tideless and inert, will no longer tolerate the
race which has for a moment disturbed its solitude. Man will go down
into the pit, and all his thoughts will perish.”
A.J. Balfour
Enthalpy, Entropy, and
Free Energy Calculations
Can we predict if a reaction will occur? This is a question that can be answered by
applying the principles of chemical thermodynamics, the study of the energy
relationships associated with chemical reactions. The term we use to label a reaction that
proceeds without continual energy input is spontaneous. A spontaneous reaction is one
that will occur all by itself, once it has been given a small amount of energy so that it can
get started. The burning of paper, for example, is a spontaneous reaction. Once you add a
little bit of energy, like the heat from a match, the paper continues to burn without any
outside help, until there is no more paper to burn. In contrast, a nonspontaneous reaction
is one that will not proceed unless an outside source of energy is used. An example of a
nonspontaneous reaction is the decomposition of water into hydrogen and oxygen. If we
add energy to water, the water may begin to decompose (if the amount of energy is great
enough) but the decomposition will stop as soon as the energy source is cut off. In this
unit we will focus on performing calculations that will allow us to predict the spontaneity
of chemical reactions.
Free Energy
J. Willard Gibbs (1839–1903) can be considered as one of the founding fathers of the field
of chemical thermodynamics. He introduced a quantity known as Gibbs free energy, G,
that represents the amount of energy available in a chemical system that can do useful
work. If we are to consider a chemical change, we are interested in the change of free
energy, or ∆G. Thus ∆G is a measure of the amount of energy in a chemical change that is
free to do work on another physical or chemical system.
The most notable aspect of the ∆G concept is that its sign allows us to predict the
spontaneity of a chemical reaction that occurs at a constant temperature and pressure:
1. If ∆G is negative, the reaction is spontaneous.
2. If ∆G is positive, the reaction is nonspontaneous.
3. If ∆G is zero, the reacting system is at equilibrium, and there will be no change in the
reaction on the macroscopic level.
Enthalpy, Entropy, and Free Energy Calculations
Standard state values of ∆G, symbolized as ∆G°, are commonly found in tables of
thermodynamic quantities. Recall that the thermodynamic standard state conditions are
25°C, 1 atm pressure for gases, and 1 M concentrations for solutions. Calculation of ∆G°
for a reaction is given by
∆G° = Σn∆Gf°products – Σn∆Gf°reactants
(Eq.1)
where ∆Gf° is the standard free energy of formation; that is, the free energy change that
occurs when one mole of a compound is formed from elements in their standard states.
Note the similarity of this equation to the equation used to calculate ∆H° for a reaction,
which was introduced earlier in your study of chemistry.
EXAMPLE 1
Calculate the free energy change for the complete combustion of one mole of methane,
CH4(g), the main component of natural gas. Is this reaction spontaneous?
SOLUTION
We begin by writing the equation that represents this reaction. Recall that "complete
combustion," or burning, is a reaction with oxygen from the atmosphere, forming carbon
dioxide and water:
CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)
Now we apply Equation 23.1 and then consult a table of thermodynamic values:
∆G° = (1 mol)[∆Gf° for CO2(g)] + (2 mol)[∆Gf° for H2O(l)] –
(1 mol)[∆Gf° for CH4(g)] – (2 mol)[∆Gf° for O2(g)] =
(1 mol) (–394.4 kJ/mol) + (2 mol) (–237.0 kJ/mol) – (1 mol) (–50.8 kJ/mol) –
(2 mol) (0) = –817.6 kJ
(Thermodynamic values are experimentally determined, so the values in your textbook
may differ slightly from these.)
The negative value of ∆G° indicates that the reaction is spontaneous. This matches our
experiences in everyday life, where we have seen that natural gas burns spontaneously.
Entropy
The standard state entropy change for a reaction, ∆S°, can be calculated from data in
thermodynamic tables in a manner similar to changes in enthalpy and free energy. ∆S° for
a chemical reaction is
∆S° = ΣnS°products – ΣnS°reactants
(Eq.2)
Enthalpy, Entropy, and Free Energy Calculations
A notable difference in ∆S° values is that we do not use "entropies of formation." This is
a result of the Third Law of Thermodynamics, which defines a zero for entropy and thus
allows us to calculate absolute entropy values.
EXAMPLE 2
Determine the standard entropy change for the decomposition of one mole of solid
calcium carbonate, forming solid calcium oxide and carbon dioxide gas.
SOLUTION
This is a straight-forward application of Equation 2, followed by substitution of the
appropriate values from a table.
CaCO3(s) → CaO(s) + CO2(g)
∆S° = (1 mol)[∆S° for CaO(s)] + (1 mol)[∆S° for CO2(g)] –
(1 mol)[∆S° for CaCO3(s)] =
(1 mol) (39.8 J/mol K) + (1 mol) (213.7 J/mol K) – (1 mol) (92.9 J/mol K) =
160.6 J/K
Free Energy, Enthalpy, and Entropy
By definition, Gibbs free energy is
G ≡ H – TS
(Eq.3)
We are interested in the change of free energy associated with chemical reactions rather
than absolute quantities, so we have
∆G = ∆H – ∆(TS)
(Eq.4)
and if we consider constant temperature processes,
∆G = ∆H – T∆S
(Eq.5)
and, finally, adding in standard state conditions, we have
∆G° = ∆H° – T∆S°
(Eq.6)
Equation 23.6, the Gibbs–Helmholtz equation, tells us that the standard free energy
change depends on both the change in enthalpy and the change in entropy. We will
explore this idea further during the workshop activities; for now, let's see how ∆G° can be
calculated from ∆H° and ∆S° values.
Enthalpy, Entropy, and Free Energy Calculations
EXAMPLE 3
Calculate ∆G° for the reaction in Example 2, the decomposition of calcium carbonate,
from ∆H° and ∆S° values.
Enthalpy, Entropy, and Free Energy Calculations
SOLUTION
We have already calculated ∆S° for the reaction CaCO3(s) → CaO(s) + CO2(g) as
160.6 J/K. We can find ∆H° for the reaction in a similar manner:
∆H° = (1 mol)[∆H° for CaO(s)] + (1 mol)[∆H° for CO2(g)] –
(1 mol)[∆H° for CaCO3(s)] =
(1 mol) (–635.3 kJ/mol) + (1 mol) (–393.5 kJ/mol) – (1 mol) (–1207.0 kJ/mol)
= 178.2 kJ
Now we use Equation 23.6 to find the value of ∆G°:
∆G° = ∆H° – T∆S° = 178.2 kJ – 298.15 K ×
160.6 J
1 kJ
×
= 130.3 kJ
K
1000 J
Notice that we used 298.15 K, or 25°C as the value of T. This is thermodynamic
standard temperature. Also note how the ∆S° value was in joules per kelvin, while the
∆H° value was in kJ. The J ↔ kJ conversion must be accounted for in the calculation.
Nonstandard Conditions and Free Energy
Up to this point, we have only considered thermodynamic changes under standard
conditions. ∆G at any conditions can be determined by
∆G = ∆G° + RT ln Q
(Eq.7)
where Q is the reaction quotient. This is the same quantity that was introduced while we
were studying chemical equilibria.
EXAMPLE 4
Consider the reaction of nitrogen monoxide and chlorine to form nitrosyl chloride:
2 NO(g) + Cl2(g) → 2 NOCl(g)
a) Calculate ∆G° for the reaction.
b) Calculate ∆G when pNO = 0.30 atm, pCl2 = 0.10 atm, and pNOCl = 0.45 atm.
SOLUTION
a) ∆G° is found by applying Equation 23.1:
∆G° = (2 mol)[∆Gf° for NOCl(g)] – (2 mol)[∆Gf° for NO(g)] –
(1 mol)[∆Gf° for Cl2(g)] =
(2 mol) (66.2 kJ/mol) – (2 mol) (86.6 kJ/mol) – (1 mol) (0) = –40.8 kJ
Enthalpy, Entropy, and Free Energy Calculations
b) ∆G at nonstandard conditions (the pressures are not 1 atm in this case) is found by
applying Equation 23.7: ∆G = ∆G° + RT ln Q. Let's begin by calculating Q:
Q =
(pNOCl)2
(0.45)2
=
= 23
(pNO)2 (pCl2 )
(0.30)2 (0.10)
Now we can find ∆G:
∆G = ∆G° + RT ln Q = –40.8 kJ +
8.314 J
1 kJ
× 298.15 K × ln 23 ×
=
mol K
1000 J
–33.0 kJ
The Equilibrium Constant and Free Energy
Starting from Equation Eq.7,
∆G = ∆G° + RT ln Q
(Eq.7)
and using the facts that at equilibrium, Q = K and ∆G = 0,
0 = ∆G° + RT ln K
(Eq.8)
and finally rearranging to isolate ∆G°,
∆G° = –RT ln K
(Eq.9)
we obtain the relationship between the change in free energy for a reaction and the
equilibrium constant.
EXAMPLE 5
Ksp for the reaction BaSO4(s)
Ba2+(aq) + SO42–(aq) is 1.1 × 10–10. Use
thermodynamic data to determine ∆G° for this reaction, and then calculate K from
Equation 9. How do the K values compare?
SOLUTION
∆G° is found in the usual manner:
∆G° = (1 mol)[∆Gf° for Ba2+(aq)] + (1 mol)[∆Gf° for SO42–(aq)] –
(1 mol)[∆Gf° for BaSO4(s)] =
(1 mol) (–560.8 kJ/mol) + (1 mol) (–744.5 kJ/mol) – (1 mol) (–1362.3 kJ/mol) =
57.0 kJ
Enthalpy, Entropy, and Free Energy Calculations
Now we can use Equation 23.9 to find K:
–∆G°
RT
Let's get the coefficient of e first:
∆G° = –RT ln K ln K =
K = e(–∆G°/RT)
–∆G°
K
1
1000 J
= –57.0 kJ ×
×
×
= –23.0
RT
8.314 J
298.15 K
kJ
↑
assume molar quantities
K = e–23.0 = 1.0 × 10–10
The K calculated from ∆Gf° values agrees with the tabulated Ksp value to ±1 in the
doubtful digit.
Enthalpy, Entropy, and Free Energy Calculations
Name: ______________________________
(To be done semi-independently with minimal consultation; include anyone’s name who
helped you.)
Thermochemistry Problems
1.
Solid elemental sulfur can be produced, along with liquid water, by the reaction of
hydrogen sulfide and sulfur dioxide gases. Calculate the standard free energy
change for this reaction.
2.
Nitrogen monoxide gas spontaneously decomposes into dinitrogen oxide and
nitrogen dioxide gases. What is the standard entropy change for the decomposition
of 3.0 mol of nitrogen monoxide?
3.
A hypothetical reaction has ∆H° = –200.3 kJ and ∆S° = –77.0 J/K. Is this reaction
spontaneous? Support your answer with the appropriate calculation.
Enthalpy, Entropy, and Free Energy Calculations
4.
Most of the direct energy needs of a cell are provided by the reaction of adenosine
5'-triphosphate (ATP) to form adenosine 5'-diphosphate (ADP) and hydrogen
phosphate ion (Pi):
ATP → ADP + Pi
∆G° = –30.0 kJ/mol for this reaction. What is ∆G when the concentrations in a cell
are [ATP] = 3.2 × 10–3 M, [ADP] = 1.4 × 10–3 M, and [Pi] = 5.0 × 10–3 M?
5.
Find the value of Ksp for iron(II) hydroxide from your textbook, then use
Equation 9 to determine the value of ∆G° for the solution reaction of this slightly
soluble solid. How does this value compare to the value determined by using ∆Gf°
values?
Enthalpy, Entropy, and Free Energy Calculations
Name(s) ______________________________
(Turn-in one completed Worksheet per group with the names of each member who
contributed.)
Workshop: Enthalpy, Entropy,
and Free Energy Calculations
Questions 1–3, Suggested approach: select two partners, and have each member work on
one of these three questions. When finished, discuss the results with the whole group and
record your answers to turn in.
1.
Consider the definition of Gibbs free energy, G ≡ H – TS, and the equations
that can be derived from this definition. Construct a "truth table" showing all
possible combinations of enthalpy and entropy changes for a chemical reaction
and the resulting ability to predict the spontaneity of the reaction. Use your
textbook to find an example of a reaction that fits each condition in your truth
table.
Enthalpy, Entropy, and Free Energy Calculations
2.
Consider the definition of Gibbs free energy, G ≡ H – TS, and the equations
that can be derived from this definition. Can a particular chemical reaction be
nonspontaneous at one temperature but spontaneous at another temperature? If
so, what criteria must be satisfied? If not, explain why.
3.
Consider the equation that allows us to calculate free energy change under
nonstandard conditions, ∆G = ∆G° + RT ln Q, and the equations that can be
derived from this equation. Can the spontaneity of a reversible chemical reaction
be determined solely from the equilibrium constant of that reaction? To answer
this question, carefully consider the criteria for determining spontaneity and the
relationship between the reaction quotient, Q, and the equilibrium constant, K.
Explain your answer.
Enthalpy, Entropy, and Free Energy Calculations
Questions 4–8, Suggested approach: Complete each question as a round-robin. Use data
from the thermodynamic tables in your textbook as necessary to answer the questions.
4.
Determine the free energy change when 1.00 L of ethane, C2H6(g), at 25°C and
1.0 atm pressure, is completely oxidized.
5.
Consider the decomposition of solid ammonium chloride to ammonia and
hydrogen chloride gases. What do you predict for the sign of ∆S°? Consider a
particulate-level explanation for your prediction. Calculate the value of ∆S° for the
reaction, and compare it to your prediction. Now consider the decomposition of
aqueous ammonium chloride to aqueous ammonia and hydrochloric acid. What do
you predict for the sign of ∆S°? Why? Compare your prediction to the calculated
value.
6.
Consider these thermodynamic values for hypothetical compounds:
Species (state) ∆Hf° (kJ/mol)
A(g)
–386.5
B(g)
–139.9
Y(g)
33.6
Z(g)
–295.2
S° (J/mol K)
177.0
234.8
277.1
301.3
Is the reaction A + B → Y + Z spontaneous? Is the reaction Y + Z → A + B
spontaneous? How do you know?
Enthalpy, Entropy, and Free Energy Calculations
7.
One of the reaction steps for the metabolism of glucose in animals is not
spontaneous:
2-phosphoglycerate → phosphoenolpyruvate
∆G°' = 1.7 kJ/mol
(The prime indicates biochemistry standard state, which is the same as chemistry
standard state except that biochemistry uses pH = 7.0 as a condition.) Will this
reaction take place in a cell where [2-phosphoglycerate] = 2.3 × 10–4 M and
[phosphoenolpyruvate] = 8.4 × 10–5 M?
8.
Complete the blanks in the following statement. Significant quantities of both
reactants and products are present at equilibrium for a reversible chemical reaction
if ∆G° for that reaction is between _____ and _____.
Tutor Answer
Nov 9th, 2016

Similar Questions
Stones form in the urinary tract when certain chemicals
The solubility of calcium oxalate in urine is 9 x 10^-5 M. Ksp is 8.1 x 10^-9. The concentration of calcium in urine is ap...
Oxalate
The solubilty of calcium oxalate (CaC2O4) in urine is 9 x 10^-5 M. Ksp of CaC2O4 is 8.1 x10^-9. THe solubility of magnesi...
oxalate .
The solubilty of calcium oxalate (CaC2O4) in urine is 9 x 10^-5 M. Ksp of CaC2O4 is 8.1 x10^-9. THe solubility of magnesi...
How to make potassium iodide solution from potassium iodate
does anyone know how to make potassium iodide solution from potassium iodate granulated?...
Chemistry discussion
.its hydrocarbon phase behavior type questionshydrocarbon flow.pdf ...
Chemistry II Lab questions
I need someone to complete Chemistry II Lab questions (4 questions only) ...
What is the pKa of formaldehyde
What is the pKa of formaldehyde? I know that after deprotonation, the lone pair will be left in an orbital orthogonal to t...
Chemistry discussion
What is the pKa of formaldehyde? I know that after deprotonation, the lone pair will be left in an orbital orthogonal to t...
What is the pKa of formaldehyde
The lone pair after deprotonation can't be resonance stabilized, but it is in a sp2 orbital, and the oxygen provides indu...
Hot Questions
Need help with some Discussions about cultural issues that may impact on you as an ICT professional
Question 1Describe and discuss what cultural issues may impact on you as an ICT professional if your organisation mer...
The table lists the average annual cost of tuition and fees, algebra homework help
The table lists the average annual cost of tuition and fees
at private 4-year colleges for sel...
Childhood Anxiety/ Ashford Univ EDU644
Hourigan, Settipani, Southam-Gerow, & Kendall (2012) explain, “Childhood anxiety disorders are among the most common...
HMGT 300 Week 6 Quiz
Question
1 (4 points)
According to the National Institute
for Health Care Management: Understanding U.S...
Payroll project.
I need help with this payroll project from Chapter 7. This is the book: Payroll Accounting, by Beig, Toland, edition 2017....
Appropriate Quotation (MLA Style) - Quiz 10 quetion
Question 1 (1 point) [Original:]
Most editors test their covers in focus groups in an endless search for
the magi...
MLA Works Cited - Quiz 10 question
Question 1 (1 point) The student is quoting from "Surveillance: Taking It Downtown" by Br...
Identifying an Acceptable Paraphrase (MLA Style) - Quiz 10 question
Question 1 (1 point) [Ed: error here relates to close wording]The
original vision of charter schools in 1988, when ...
questions end of term British and world literature
1. In his stories, Arthur Conan Doyle portrays Sherlock Holmes as __________.(Points : 5) an intelligent a...
Related Tags
Study Guides
Frankenstein
by Mary Shelley
12 Rules for Life
by Jordan Peterson
Gone with the Wind
by Margaret Mitchell
Dracula
by Bram Stoker
Calypso
by David Sedaris
What Happened
by Hillary Clinton
Cant Hurt Me - Master Your Mind and Defy the Odds
by David Goggins
Pride and Prejudice
by Jane Austen
Death on the Nile
by Agatha Christie