# Few Math Questions

*label*Other

*timer*Asked: Nov 14th, 2016

**Question description**

1.) Find x or y so that the statement is true.

2.) Let A={1,2,3,4}. Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive.

R={(1,2), (1,3), (3,1), (1,1), (3,3), (3,2), (1,4), (4,2), (3,4)}

3.) Find x or y so that the statement is true.

(3x+1,2)=(7, 2)

4.) List all the partitions of B={a,b,c,d}.

5.) Let A=[1,2,3,4,5,6,7,8,9,10] and let

A1={1,2,3,4} A2={5,6,7}

A3={4,5,7,9} A4={4,8,10}

A5={8,9,10} A6={1,2,3,6,8,10}

The following are partitions of A:

{A1,A2,A5} *True or False?*

6.) Let A={1,2,3,4}. Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive.

R=A x A

7.) Find x or y so that the statement is true.

(C++, PASCAL)=(y, x)

8.) Let A=[a,b] and B=[4,5,6]. List the elements in B x B.

9.) If A=[a, b, c]. B=[1,2], and C=[#, *], list all of the elements of A x B x C.

10.) Find x or y so that the statement is true.

11.) Let A={1,2,3,4}. Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive.

R={(1,1),(2,2), (3,3)}

12.) Let A={1,2,3,4}. Determine whether the relation is reflexive, irreflexive, symmetric, asymmetric, antisymmetric, or transitive.

R={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}