ppt of Rstudio analysis

timer Asked: Apr 28th, 2017

Question description

integrate the data analysis I have in hand using RStudio and excel into powerpoint slides. We analyze the freethrow percentage with few model to determine corelation and other models. Please put all the things we have into a few slides based on the instruction I will attach.

Basketball <- read_csv("C:/Users/kaziz/Desktop/MKTG 480N Basketball analytics.csv")

# to help generate correlation plots
install.packages("PerformanceAnalytics", repos = "http://cran.us.r-project.org")


# to help visualize correlation in color
install.packages("corrplot", repos = "http://cran.us.r-project.org")


#See some Descriptive statistics about our Basketball dataset


```{r, results='hide'}
# Using the function chart.Correlation from "PerformanceAnalytics" package,
# we can create a correlation matrix easily, much easier than built in functions

# However, before that, we need to pick out the numerical variables
# because we cannot run correlation matrix with categorical data or missing data
Basketball.num = sapply(Basketball, is.numeric) # label TRUE FALSE for numerical variables
num = Basketball[,Basketball.num] # selecting only numerical variables


correlation = cor(num, use = "complete.obs")
corrplot(correlation, type="upper")

Basketball$Post= ifelse(Basketball$Pos=="PG",1,ifelse(Basketball$Pos=="SG",2,ifelse(Basketball$Pos=="SF",3,ifelse(Basketball$Pos=="PF",4,5))))

# first load package "caTools"

# based on probability 70% training data / 30% test data split.
# We create an item variable called "indicator", where indicator = TRUE takes up 70% of data
indicator = sample.split(Basketball, SplitRatio = 0.7)

# Extract out the data based on whether indicator variable is TRUE or FALSE
testing = Basketball[!indicator,] # getting 30% of the data as testing
training = Basketball[indicator,] # getting 70% of the data as training

# Attach training data first

# To build a linear regression model, give this model a name "linear":
linear = lm(FTP~ Post + FGP + `3PP` + AST + TRB+ TOV+BLK+`PS/G`+ MP)

# To see the result of model:


# To predict the gross of data from testing dataset using the linear model we built
testing$linear_prediction = predict(linear, newdata = testing)

# To see the accuracy of prediction:
accuracy = testing$linear_prediction - testing$FTP
percent = accuracy/testing$FTP
mean(accuracy,na.rm = TRUE) # to see how much percentage away from the actual

Tutor Answer

(Top Tutor) Studypool Tutor
School: Rice University
Studypool has helped 1,244,100 students
flag Report DMCA
Similar Questions
Hot Questions
Related Tags
Study Guides

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors