1. [bookmark: _GoBack]Explain why, in MARIE, the MAR is 12 bits wide and the AC is 16 bit wide. (4 points)
MARIE can handle 16-bit data, so the AC must be 16 bits wide. However, MARIE's memory is limited to 4096 address locations, so the MAR only needs to be 12 bits wide to hold the largest address.
2. Write the MARIE assembly language equivalent for the machine instruction: 1011000000001111 and 1000100000000000 (6 points)
At first, MARIE is a Machine Architecture that is Really Intuitive and Easy which is a system that consists of memory, CPU, Registers, and many more
This MARIE has nearly 13 instructions which are followed for its operations
Here in the above given 16 bits 4 bit is assigned for opcode that is operation instruction and remaining 12 bits is the address or condition bits
1011000000001111
Here there are 16 bits so let's divide it into 4+ 12
1011 is an opcode that represents MARIE instruction AddI X
Use the value present at address 000000001111 that is the address of X as the actual address and add the value to AC.
Here AddI is Add indirect.
00000000111
1000100000000000
Here there are 16 bits so let's divide it into 4+ 12
1000 is an opcode that represents MARIE instruction Skipcond
Skip the next instruction on condition by inspecting the value present in AC address 1000000000
3. Combine Figure 4.12 (Fetch-Decode-Execute Cycle with interrupt Checking) and Figure 4.13 (Processing an Interrupt) to make one figure to show the whole process of Interrupt. Draw your own flowchart. (10 points)
[image:]
4. Draw Figure 4.14 (a) (The Load 104 part of A Trace of the Program to Add Two Numbers) and explain each line about what is happening and why the registers have the value specified in the table. (10 points)
The program is given below,
100 If, Load X /Load the first value
101 Subt Y /Subtract the value of Y, store result in AC
102 Skipcond 400 /If AC=0 (X=Y), skip the next instruction
103 Jump Else /Jump to Else part if AC is not equal to 0
104 Then, Load X /Reload X so it can be doubled
105 Add X /Double X
106 Store X /Store the new value
107 Jump Endif /Skip over the false, or else, part to the end of if
108 Else, Load Y /Start the else part by loading Y
109 Subt X /Subtract X from Y
10A Store Y /Store Y-X in Y
10B Endif, Halt /Terminate program (it doesn't do much!)
10C X, Dec 12 /Assume these values for X and Y 1 Comment Expert Answer
10D Y, Dec 20
5. If we assemble the following MARIE assembly language program: (15 points)
	Memory Address (Hexadecimal)
	Instruction

	
	

	210
	Load A

	211
	Sub B

	212
	Store C

	213
	Halt

	214
	0015

	215
	FFDE

	216
	0000

	
	

1) Show the symbol table after the first pass.
The instructions and their binary codes are listed in the Table 1 given below.
[image:]
Table 1. MARIE's Instruction Set
[image:]
The Table 2 given below shows the PC, IR, MAR, MBR and AC content after the execution of first three instructions.
Table 2 Register content after the execution of the first three instructions
The value at location Y is subtracted from the value at X and as the value at X is less than the value at Y, the result will be a negative number. The skip condition checks whether the result is zero or not. As the result is a nonzero value, the skip operation will not be done.
2) Show the translated instructions after the first pass.
In this part, a new instruction needed to be added (Jumpl Offset X). Here the offset address value is stored at location X. So first, the content of X need to be read from memory to MBR and add it with AC and then place it on to the PC. By assuming the opcode fetch is done,the RTN for Jumpl Offset X is given below.
 MAR ← X
MBR ← M
[MAR] AC ← AC+ MBR
PC ← AC
3) Show the translated instructions after the second pass.
In this part, the program for reading 8 integers as input and finding out the largest and smallest value is done.
	Label
	Instruction
	Operand
	Comment

	
	ORG 100
	
	/PROGRAM STARTS AT LOCATION 100

	LOOP,
	LOAD
	X
	

	
	SUBT
	EIGHT
	

	
	SKIPCOND
	000
	/ CHECKS WHETHER OUR ALL DATA ARE INPUTED OR NOT

	
	JUMP
	PRINT
	

	
	CLEAR
	
	

	
	INPUT
	
	

	
	STORE
	TEMP
	

	
	CLEAR
	
	

	
	LOAD
	X
	/CHECK WHETHER THE INPUTTED DATE IS THE FIRST ONE OR NOT

	
	SUBT
	ZERO
	

	
	SKIPCOND
	800
	

	
	JUMp
	STOREFIRST
	

	
	CLEAR
	
	/FIND WHETHER THE CURRENT DATA IS LESS THAN MIN OR NOT

	
	LOAD
	TEMp
	

	
	SUBT
	MIN
	

	
	SKIPCOND
	000
	

	
	JUMP
	FINDMAX
	

	
	JUMP
	MINSTORE
	

	CONTINUE,
	CLEAR
	
	/INCREMENT THE DATA COUNTER

	
	LOAD
	X
	

	
	ADD
	ONE
	

	
	STORE
	X
	

	
	CLEAR
	
	

	
	JUMP
	LOOP
	

	FINDMAX,
	CLEAR
	
	/FIND WHETHER THE CURRENT DATA IS GREATER THAN MAX OR NOT

	
	LOAD
	TEMP
	

	
	SUBT
	MAX
	

	
	SKIPCOND
	800
	

	
	JUMP
	CONTINUE
	

	
	JUMP
	MAXSTORE
	

	MINSTORE,
	CLEAR
	
	/STORE THE MINIMUM VALUE TO MIN

	
	LOAD
	TEMP
	

	
	STORE
	MIN
	

	
	JUMP
	CONTINUE
	

	MAXSTORE,
	CLEAR
	
	/STORE THE MAX VALUE TO MAX

	
	LOAD
	TEMP
	

	
	STORE
	MAX
	

	
	JUMP
	CONTINUE
	

	STOREFIRST,
	LOAD
	TEMP
	/ STORE THE FIRST DATA ON TO MAX AND MIN LOCATIONS

	
	STORE
	MIN
	

	
	STORE
	MAX
	

	
	JUMp
	CONTINUE
	

	PRlNT,
	LOAD
	MAX
	/PRINT THE MAXIMUM AND MINIMUM VALUE

	
	OUTPUT
	
	

	
	CLEAR
	
	

	
	LOAD
	MIN
	

	
	OUTPUT
	
	

	
	CLEAR
	
	

	EIGHT,
	HALT
	
	

	ONE,
	DEC 8
	
	/LOCATION FOR CONSTANT VALUE 8 TO CHECK THE
NUMBER OF INPUT

	ZERO,
	DEC 1
	
	/LOCATION FOR CONSTANT VALUE 1 TO INCREMENT THE COUNTER

	x,
	DEC O
	
	/LOCATION FOR CONSTANT VALUE O

	MIN,
	DEC O
	
	/LOCATION FOR COUNT OF INPUT DATA

	MAX,
	DEC O
	
	/LOCATION FOR MINIMUM VALUE

	T EMR
	DEC O
	
	/LOCATION FOR MAXIMUM VALUE

	EIGHT,
	DEC O
	
	/TEMPORARY LOCATION FOR STORING CURRENT INPUT

In the above program, eight different inputs are taken and stored to a temporary location called TEMP. Every time the content of TEMP is compared with MAX and MIN. If TEMP content is found to be greater than MAX then MAX content is replaced with TEMP content. If TEMP content is less than MIN content, the MIN content is replaced with TEMP Content. The data count is done by X and every time X is incremented when a new data is inputted and once it reaches 8, the MIN and MAX will have smallest and largest value respectively. The program then outputs the MAX and MIN value. The screenshots of the simulation is shown below.
[image:]
The above screenshot shows the input values given while running the code.
[image:]
The above screenshot shows the output obtained after the simulation. The maximum value and minimum values are listed at the output screen.

………..
image1.png
START

e
LOAD LOAD PC
ADDRESS |—»| CONTENT
TOPC TO MAR
SETPCTO
LOAD DATA LOAD PC TO VALUE
REQUIRED |« NEXT FROM JUMP
TO MDR ADDRESS
l vis
MAR DECODE
CONTENT |—»| CIRR -
TO CIR CONTENTS

No

INTERUPT? EXECUTE

<

Yes

SERVICE
INTERUPT

image2.png
Mnemonic

output
Skipcond X

Store X
StoreI X

Subt X

[CRERSNeRURN TR

@ o

[CHSY

Description

Add the contents of address X to AC

Add indirect: Use the value at X as the actual
address of the data operand to add to AC

Put all zeros in AC

Input a value from the keyboard into AC

Terminate program

Load the value of X into PC

Use the value at X as the address to jump to

Store the PC at address X and jump to X+1

Load contents of address X into AC

Load indirect: Use the value at X as the
address of the value to load.

Output the value in AC to the display

Skip next instruction on condition

(See note below.)

Store the contents of AC at address X

Store indirect: Use X the value at X as the
address of where to store the value.

Subtract the contents of address X from AC

image3.png
Address | Instruction PC IR MAR MBR AC

100 Load X 101 [110c [10c [oooc | oooc
| 101 | subty 102 [4100 | 10D | 0014 | FFEs |
| 102 | skipcondaoo | 103 | s400 | 400 | o014 | FFFs |

image4.png
Assembly code:

C@mNO s wN R

10
1
12
13
14
15
16
17
18

ORG 100
Loop, Lo x
SUBT EIGHT

SKIPCOND @00
JuMP PRINT

cLear
NPUT
STORE TEMP
CLEAR
Lo X
SUBT ZERO

SKIPCOND 800

Autosaved file

/ CHECKS WHETHER OUR ALL DATA ARE INPUTED OR |

/CHECK WHETHER THE INPUTTED DATE IS THE FIRST ONE

JUMP STOREFIRST

CLEAR
LoD TEwp
SUBT MIN

SKIPCOND @00

/FIND WHETHER THE CURRENT DATA IS LESS THAN MIN OI

. | »

»

Ac Outputlog RTLlog Watchlist
Input list

0000 | INPUTMODE: DEC v

Inputs Given

image5.png
Assembly code: Autosaved file

1 ORG 100

2 Loop, LoAD X

3 SUBT EIGHT

a SKIPCOND @80 / CHECKS WHETHER OUR ALL DATA ARE INPUTED OR ||
5 JUMP PRINT

6 CLEAR

7 INPUT

8 STORE TEMP

9 CLEAR

10 LOAD X /CHECK WHETHER THE INPUTTED DATE IS THE FIRST ONE
1 SUBT ZERO

12 SKIPCOND 800

13 JUMP STOREFIRST

14 CLEAR /FIND WHETHER THE CURRENT DATA IS LESS THAN MIN Ol
15 LOAD TEMP

16 SUBT MIN

17 SKIPCOND @@

18 |« e —— »

Machine halted normally.

AC

IR
7000

MAR
130

MBR
7000

131

FFFB

out
FFO6,

Outputiog = RTLlog Watch list

Input list

OUTPUT MODE: [DEC

Outputs Obtained

