# vector mechanics

Aug 16th, 2016
Studypool Tutor
Price: \$5 USD

Tutor description

Word Count: 2089
Showing Page: 1/3
13Lecture 11 and 12(39) Suppose W1 , W2 are subspaces of a vector space V over F. Then defineW1 + W2 := {w1 + w2 : w1 W1 , w2 W2 }.This is a subspace of V and it is call the sum of W1 and W2 . Students must verify that W1 +W2is a subspace of V (use the criterion for a subspace).Examples:(a) Let V = R2 , W1 = {(x, x) : x R} and W2 = {(x, x) : x R}. Then W1 + W2 = R2 .Indeed, (x, y) = ( x+y, x+y) + ( xy, xy).22224(b) Next, let V = R , W1 = {(x, y, z, w) : x + y + z = 0, x + 2y z = 0}, W2 = {(s, 2s, 3s, t) :s, t R}. How to describe W1 + W2 (e.g., find a basis)?The following theorem tells us the dimension of W1 + W2 and the proof of the theorem suggesthow to write its bases.Theorem: If W1 , W2 are subspaces of a vector space V , thendim(W1 + W2 ) = dimW1 + dimW2 dim(W1 W2 ).Proof: Let S be a basis of W1 W2 (if W1 W2

## Review from student

Studypool Student
" Top quality work from this guy! I'll be back! "

1826 tutors are online

### Other Documents

08/16/2016
08/16/2016
08/16/2016
08/16/2016

Brown University

1271 Tutors

California Institute of Technology

2131 Tutors

Carnegie Mellon University

982 Tutors

Columbia University

1256 Tutors

Dartmouth University

2113 Tutors

Emory University

2279 Tutors

Harvard University

599 Tutors

Massachusetts Institute of Technology

2319 Tutors

New York University

1645 Tutors

Notre Dam University

1911 Tutors

Oklahoma University

2122 Tutors

Pennsylvania State University

932 Tutors

Princeton University

1211 Tutors

Stanford University

983 Tutors

University of California

1282 Tutors

Oxford University

123 Tutors

Yale University

2325 Tutors