agelbra- factoring formulas

May 28th, 2015
Studypool Tutor
Price: $10 USD

Tutor description

Algebra Identities to Solve some Simple Problems : Algebraic identity for (x + a)(x + b) By using the distributive properties of numbers, (x + a )(x + b ) = x(x + b) + a(x + b) = x2 + xb + ax + ab = x2 + ax + bx + ab= x2 + (a + b)x + ab.

Word Count: 293
Showing Page: 1/4
Algebra Help.. (Identities)Putting the stuff together, we getNote also that we haveFactoring FormulasAlgebra Identities to Solve some Simple Problems :Algebraic identity for (x+a)(x+b)By using the distributive properties of numbers,(x+a)(x+b) =x(x+b) +a(x+b) =x2+xb+ax+ab =x2+ax+bx+ab=x2+ (a+b)x+ab.(x+a)(x+b) x2+ (a+b)x+ab(xa)(x+b) x2+ (ba)xab(x+a)(xb) x2+ (ab)xab(xa)(xb) x2 (a+b)x+ab(a+b)2a2+ 2ab+b2(ab)2a2 2ab+b2(a+b)(ab) a2b2(a+b)3a3+ 3a2b+ 3ab2+b3(ab)3a33a2b+ 3ab2b3a3+b3(a + b)33ab(a + b)a3b3(ab)3+3ab(ab)Difference of squaresDifference of cubesSum of cubesSpecial Algebra ExpansionsFormula for (a+b)2and (a-b)2Formula for (a+b)3and (a-b)3FormulaConsider this quadratic equation:Wherea,bandcare the leading coefficients.The roots for this quadratic equation will be

Review from student

Studypool Student
" Thank you, Thank you, for top quality work, this is your guy!! "
Ask your homework questions. Receive quality answers!

Type your question here (or upload an image)

1831 tutors are online

Brown University





1271 Tutors

California Institute of Technology




2131 Tutors

Carnegie Mellon University




982 Tutors

Columbia University





1256 Tutors

Dartmouth University





2113 Tutors

Emory University





2279 Tutors

Harvard University





599 Tutors

Massachusetts Institute of Technology



2319 Tutors

New York University





1645 Tutors

Notre Dam University





1911 Tutors

Oklahoma University





2122 Tutors

Pennsylvania State University





932 Tutors

Princeton University





1211 Tutors

Stanford University





983 Tutors

University of California





1282 Tutors

Oxford University





123 Tutors

Yale University





2325 Tutors